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Biased Diffusion with Correlated Noise
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The diffusion of hard-core particles subject to a global bias is described by a
nonlinear, anisotropic generalization of the diffusion equation with conserved,
local noise. Using renormalization group techniques, we analyze the effect of an
additional noise term, with spatially long-ranged correlations, on the long-time,
long-wavelength behavior of this model. Above an upper critical dimension dLR ,
the long-ranged noise is always relevant. In contrast, for d<dLR , we find a
``weak noise'' regime dominated by short-range noise. As the range of the noise
correlations increases, an intricate sequence of stability exchanges between dif-
ferent fixed points of the renormalization group occurs. Both smooth and dis-
continuous crossovers between the associated universality classes are observed,
reflected in the scaling exponents. We discuss the necessary techniques in some
detail since they are applicable to a much wider range of problems.

KEY WORDS: Nonequilibrium steady states; driven diffusive systems;
correlated noise.

I. INTRODUCTION

Systems coupled to multiple energy reservoirs, sustaining net transport
currents, are prevalent in nature but fall outside the fundamentally well-
understood paradigms of equilibrium statistical mechanics. The charac-
terization and classification of such systems, starting from simple micro-
scopic models, remains a key problem of current research. Since steady
states in such systems constitute the closest relatives of equilibrium (Gibbs)
states, their study has attracted much recent attention, (1) revealing a wealth
of unexpected phenomena, even in simple model systems. One of the prime,
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and most elementary, examples of this kind is a system of hard-core
particles undergoing biased diffusion. With appropriate boundary condi-
tions, this system, also known as the simple asymmetric exclusion process
(ASEP), (2) can exhibit a number of surprising features, including anomalous
diffusion, (2�4) long-range spatial correlations, (5) and shocks.(6) One of its
key characteristics is the breaking of the usual fluctuation-dissipation
theorem.(7)

In the following, we will discuss the effect of long-range correlated
noise on this model, formulated via a Langevin equation in continuous
space and time. Generated, for example, by correlated fluctuations in the
strength of the bias, the additional operator acts in the one-dimensional
subspace (labelled ``longitudinal'') selected by the bias. Its momentum
dependence takes the form q2(1&:)

| | , with 0�:�1. The two extreme values,
:=0 and :=1, are of particular interest. The choice :=0 corresponds to
the standard ASEP. In contrast, :=1 leads to a Langevin equation with
non-conserved noise, describing biased diffusion of particles which can occa-
sionally be created or annihilated. First introduced by Hwa and Kardar(8)

as a continuum description for sliding avalanches in sandpile models, it
was analyzed in more detail by Becker and Janssen.(9)

The key advantage of the correlated noise term is that it allows us to
incorporate the whole regime between these two models, characterized,
respectively, by conserved and non-conserved noise. Thus, using field
theoretic techniques, we discuss the full renormalization group (RG) flow
in (:, d ) space, for 0�:�1. While the limit : � 1 presents no difficulties,
the opposite limit : � 0 is far more subtle: we will see that, just below the
upper critical dimension dc(:), two nontrivial renormalization are required
to render the :=0 theory finite, in contrast to a single one if : is positive
and of O(1), leading to an apparent discontinuity in the critical exponents.
A similar situation arises in standard ,4-theory with long-ranged interac-
tions.(10) There, however, the discontinuity is entirely spurious and can be
removed: letting ==dc(0)&d denote the distance from the upper critical
dimension of the short-range theory, the key is to recognize(10) that there
is a region of small :=O(=), where a careful analysis of the RG flow
reveals a smooth connection between the :=0 and the :=O(1) theories.
Thus, all universal scaling properties are shown to depend continuously on
: and d. Here, in contrast, the limit : � 0 is even more intricate: while the
short-range theory is controlled by two fixed points, only a single one
remains in the long-range model. Thus, only one of the two short-range
fixed points is smoothly connected to the long-range fixed point, leading to
a continuous crossover. The other short-range fixed point eventually loses
its stability, accompanied by a discontinuity in critical exponents.
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A second feature of our model concerns its close relationship to the
KPZ(11) or Burgers(12) equation with correlated noise.(13, 14) It is well
known that the continuum description for the ASEP and the noisy Burgers
equation coincide in one spatial dimension. In contrast to the Burgers
equation, the =-expansion for biased diffusion around dc=2 presents no
difficulties, and numerous results can be obtained exactly, to all orders in
perturbation theory. These may therefore be analytically continued to d=1
and are expected to hold for both the ASEP and the KPZ equation. In
fact, to the extent that exact solutions(15) are available, this expectation is
indeed confirmed. Thus, our analysis bears some relation to the behavior
of the one-dimensional Burgers equation with correlated noise.

This paper is organized as follows. We first introduce the Langevin
equation for the ``short-range'' (SR) version of our model, corresponding to
the usual d-dimensional ASEP with translational invariance. We then add
a second noise term with long-range spatial correlations and propose two
possible microscopic mechanisms for such a term. Turning to the RG
analysis, we first summarize the SR case, :=0. The ``long-range'' (LR)
theory associated with :=O(1) is presented next, and the limit : � 1 is dis-
cussed. Finally, we introduce the ``hybrid'' model, characterized by
:=O(=), which interpolates between the SR (:=0) and LR (:=O (1))
theories. Its RG flow is computed in a double expansion, where both : and
= are small parameters. The different fixed points are interpreted and their
stability is evaluated, illustrating how the subtle interpolation from :=0 to
:=O(1) occurs. We conclude with some comments and open questions.

II. THE MODEL

We consider a d-dimensional system of hard-core particles, which are
allowed to diffuse on a regular lattice with fully periodic boundary condi-
tions. The bias, reminiscent of an electric field E=Ee | | acting on charges,
favors particle moves along a specific (``longitudinal'') direction along unit
vector e | | . The long-time, long-wavelength properties of this model are
most conveniently captured by a coarse-grained description in continuous
space and time. Here, only a single slow variable is needed, namely, the
local particle density c(r, t). Since the associated Langevin equation has
been discussed previously, (3, 4) we describe it only briefly here. Due to
particle number conservation, it takes the form of a continuity equation,
�t c+{j=0. In addition to a diffusive term, the current j contains an
Ohmic contribution, jE=}(c) E, induced by the bias, and a Gaussian
noise termed modelling the fast degrees of freedom. By virtue of the
excluded volume constraint, the conductivity }(c) must vanish with
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both particle and hole density, i.e., }(c) B c(1&c). Aiming for a perturba-
tion expansion around a field with zero average, we introduce the devia-
tions s(r, t)=c(r, t)&c� from the average density c� . A term linear in s,
arising from the expansion of }(c), can be absorbed via a Galilei transfor-
mation. Finally, we allow for anisotropies in the diffusion coefficient and
the correlations of the Langevin noise, since the bias singles out a preferred
direction. Neglecting contributions that are irrelevant in the long-
wavelength, long-time limit, the Langevin equation can be summarized in
the form:(4)

�t s=* {({2
=+\�2) s+

g
2

�s2=+'(r� , t) (1)

Here, {=(�) denote the gradients in the transverse (longitudinal) subspace,
and the kinetic coefficient * defines a time scale. The coupling g B E cap-
tures the effects of the drive. The noise '(r, t) is Gaussian so that two
moments suffice to characterize its full distribution (after a suitable resealing
of the variables):

('(r, t)) =0
(2)

('(r, t) '(r$, t$)) =&2*({2
=+_�2) $ (r&r$) $(t&t$)

The differential operator ({2
=+_�2) in the second moment ensures that the

conservation law is strictly obeyed. Clearly, the correlations described by
this form are purely local, so that we will refer to Eqs. (1) and (2) as the
``short-range'' (SR) theory. Its universal properties have been discussed in
refs. 4 and 5.

The simplest way of introducing a correlated noise into this equation
is to add a long-range correlated noise to the local one. Thus, Eq. (2) is
amended to

('(r, t))=0
(3)

('(r, t) '(r$, t$))=2*[&({2
=+_�2)+b(&�2)1&:] $(r&r$) $(t&t$)

The new operator b(&�2)1&: reflects a power-law decay of the noise
correlations in real space, giving rise to a=q2(1&:)

| | momentum dependence
in Fourier space. Clearly, setting : to zero reproduces the SR theory, albeit
with _ replaced by _+b. In contrast, choosing :=1 generates a non-
conserved noise, playing the role of a random source term in Eq. (1). Note
that the vanishing of the first moment ensures that the particle density,
while not strictly invariant under the dynamics, remains conserved on
average. The long-time, long-wavelength behavior of this theory has been
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analyzed in refs. 8 and 9. Other choices of long-ranged noise correlations
are of course possible.(16) The version adopted above is ``minimal'' in the
sense that, first, it leads to a nontrivial, renormalizable theory, and second,
it allows us to discuss the full regime between the conserved (:=0)
and non-conserved (:=1) cases using just one additional operator.
Microscopically such long-ranged contributions to the Langeyin noise can
be generated in two ways. One option is to impose a bias, along the e | |

direction, which consists of a spatially uniform (Eo) and a locally random
component, Er(r, t) e | | . The latter is controlled by a Gaussian distribution
with long-range correlations: (Er(r, t) Er(r$, t$)) =2*bC(r&r$) $(t&t$),
decaying at large distances according to C(x)t2*b |x|2:&d. Such a dis-
tribution is easily realized in simulations. Adding the random component
to the Ohmic current generates an additional term, �c� (1&c� ) Er(r, t), on
the right hand side of (1). Averages over the random variable Er can now
be treated completely analogously to those over the thermal noise, (2).
A second option is to retain the strictly uniform bias but randomly add or
remove particles, according to a long-ranged distribution. More details will
be presented in ref. 16.

Due to the presence of the nonlinearity, the computation of averages
over the noise distribution requires a perturbative approach, coupled with
renormalization group methods. For these purposes, it is most convenient
to recast the Langevin equations as dynamic functionals.(17) Introducing a
Martin�Siggia�Rose(18) response field s~ (r, t), we can reexpress Eqs. (1) and
(3) in the form

J[s~ , s]=| dt | d dr {s~ �t s&*s~ _({2
=+\�2) s+

g
2

�s2&
+*s~ [({2

=+_�2)&b(&�2)1&:] s~ = (4)

so that correlation and response functions can be computed as functional
averages with weight exp(&J). We stress that the SR model is recovered
from this general expression, simply by setting b=0.

As a first step towards the RG analysis of this model, we discuss its
scaling symmetries. First, under a global rescaling of all coordinates,
r� � +&1r� , we find a scale invariant theory (as long as we neglect any cut-
off-dependence) provided *t � +&2*t, s � +(d&2:)�2s and s~ � + (d+2:)�2s~ .
Moreover, we obtain g � +(1+:)&d�2g which allows us to identify the upper
critical dimension dc(:)=2(1+:). To avoid confusion, we will reserve the
symbol = for the SR case, i.e., =#2&d. For the general case, we define
=� #dc(:)&d=2(1+:)&d. Second, we may rescale the parallel coor-
dinate alone, due to the anisotropy of the model: under x | | � ;x | | , scale
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invariance is retained if s � ;&1�2s, s~ � ;&1�2s, \ � ;2\, _ � ;2_,
b � ;2(1&:)b and g � ;3�2g. This permits us to identify a set of effective
couplings, namely, u=Gd g2\&5�2_, w=\�_ and v=b\:�_. These will emerge
quite naturally in perturbation theory, combined with appropriate powers of
+ which absorb the remaining momentum dependence. For convenience, a
geometric factor Gd=Sd �(2?)d, with Sd the surface of the d-dimensional unit
sphere, has been absorbed into u. For later reference, we note that only the
positive octant u�0, w�0 and v�0 corresponds to physical theories even
though the RG flow can be discussed in a larger parameter space. Finally, the
dynamic functional (4) exhibits a nontrivial continuous symmetry, with
parameter a, which is characterized by the ``Galilean'' transformation
s(r, t) � s(r+*age | | t, t)+a, s~ (r, t) � s~ (r+*age | | t, t).

So far, we were able to consider the case of general 0�:�1. The next
section will show, however, that this procedure cannot be continued for the
actual perturbative calculation of correlation and response functions.

III. RENORMALIZATION GROUP ANALYSIS

We now turn to perturbation theory, with the goal of identifying those
correlation and response functions that require renormalization, due to the
presence of ultraviolet (UV) divergences in Feynman diagrams. As usual,
we focus on the one-particle irreducible (1PI) vertex functions with n~ (n)
external s~ - (s-) legs, 1n~ n . These will be computed in dimensional regulariza-
tion using minimal subtraction. Since the models associated with :=0 and
:=1 have been discussed previously (in refs. 4, 5, 8, and 9, respectively),
we only briefly summarize their RG structure, focusing predominantly on
the theory with 0<:<1.

A. The Short-Range Theory: :=0

We first review the model with :=0.(4, 5) Here, the coupling b and
the effective v are redundant and will be set to zero. The upper critical
dimension is dc(0)=2. Straightforward dimensional analysis shows that
there are three naively divergent vertex functions: 111 , 120 and 112 .
A Ward identity based on the ``Galilean'' symmetry shows, however, that
112 requires no additional renormalization once 111 and 120 have been
rendered finite. Letting the superscript # denote bare couplings, the renor-
malized couplings are defined in the usual way: \# =ZSR

\ \, _# =ZSR
\ _,

g# =Zg g+=�2, where ==2&d. The parameter + sets a typical momentum
scale which will control the RG flow. All SR functions are marked
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with an explicit superscript to distinguish them from their finite : counter-
parts. The UV divergences in 111 and 120 give rise to nontrivial Z-factors
for \ and _, which can be computed perturbatively in u. A one-loop
calculation yields ZSR

\ =u(3w+1)�(16=)+O(u2) and ZSR
_ =u(3w2+

2w+3)�(32=)+O(u2). We emphasize that w is not treated perturbatively
here; therefore, O(1) fixed points for w should not come as a surprise later.
Finally, Zg=1 to all orders in u, due to the ``Galilean'' invariance. To com-
plete the discussion, we introduce the Wilson functions

`SR
\ #+�+ ln \ |bare=&u

3w+1
16

+O(u2)

(5)

`SR
_ #+�+ ln \ |bare=&u

3w+ 2+2w+3
32

+O(u2)

The RG flow is expressed through the +-dependence of the renormalized
couplings u=Gd g2\&5�2_ and w=\�_, especially in the scaling limit + � 0:

;SR
u (u, w)#+�+u |bare= &[=+ 5

2 `SR
\ &`SR

_ ] u
(6)

;SR
w (u, w)#+�+w | bare=[`SR

\ &`SR
_ ] w

In this form, the right hand sides of Eq. (6) are exact to all orders.
These flow equations possess three fixed points, marked by the vanishing

of both ;SR
u and ;SR

w : (i) u*=8=�3+O(=2), w*=1; (ii) u*=16=+O(=2),
w*=0; (iii) u*=16=�3+O(=2), w*=1�3+O(=); and finally a fixed line (iv)
u*=0, with arbitrary w. The stability of these fixed points (and line) can
be expressed through the 2_2 matrix MSR#(�i;SR

j )*, i, j=u, v, of
derivatives of the ;-functions, evaluated at the fixed points. We find that
the fixed line (iv) is stable only for =<0, i.e., d>2, and will therefore be
labelled a ``Gaussian'' line. Focusing on =>0, we find that (i) and (ii) are
both locally stable. Fixed point (iii) is hyperbolic and sits on the separatrix
w=1�3+O(=) which separates the domains of attraction of (i) and (ii).
Flow lines starting in the region w>1�3+O(=) are attracted towards fixed
point (i), and vice versa. We refer to fixed point (i) as the FDT-restoring
short-range fixed point, since theories with w=1 can be shown to possess
a higher degree of symmetry, associated with satisfying the FDT.(4) Here,
Eq. (6) allows us to compute the fixed point values of `SR

\ and `SR
_ exactly,

to all orders in =: `SR
\ *=`SR

_ *=&2=�3. Conversely, fixed point (ii) violates
the FDT, and `SR

\ *=&=+O(=2); `SR
_ *=&3=�2+O(=2) are known only

perturbatively.
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Finally, we comment briefly on the scaling properties associated with
these fixed points, (4, 5) which arise from the RG equations for they vertex
functions. For example, the dynamic density correlation function (structure
factor) S(q, |)#(s(&q, &|) s(q, |)) scales as

S(q, |)=l &2S(q | | l &1&2SR, q= l &1, |l &2) (7)

This reflects the emergence of anomalous diffusion, characterized, near
fixed point (i), by a strong anisotropy exponent(1) 2SR# &`SR

\ *�2=
(2&d )�3, and, near fixed point (ii) by an exponent 2SR# &`SR

\ *�2=
=�2+O(=2). Next, we turn to the case of finite :.

B. The Long-Range Models with :=O(1)

As indicated in the Introduction, we will have to distinguish between
values of : which are O(2&d ) versus those which are O(1). Here, we
analyze the second case, which corresponds to true long-range (LR)
theories. The first case, being a ``hybrid'' between short-range and long-
range models, will be deferred to the next subsection.

Recalling our discussion in Sect. 2, the critical dimension is now
dc(:)=2(1+:), and we define =� =2(1+:)&d, to be distinguished from
==2&d. The operator s~ ({2

=+_�2) s~ is clearly irrelevant compared to
bs~ (&�2)1&: s~ and may be dropped. The naive dimensions of the fields s
and s~ are :-dependent, and as a result only two vertex functions, namely
111 and 112 , are naively divergent. In contrast to the short-range case 120

is naively convergent here. Moreover, all divergent contributions to any
vertex function are polynomial in the momenta, (10) so that b is not renor-
malized. The ``Galilean'' invariance still holds, so that 112 , and hence g,
requires no new Z-factor. Thus, defining renormalized couplings according
to \# =ZLR

\ , b1 =Zbb, g# =Zg g+=� �2, we find Zb=Zg=1 to all orders, and
ZLR

\ =1&u� A(:)�=� +O(u� 2), to first order in u� =uv. The latter is the
appropriate effective coupling here, since _ no longer appears in the theory.
The coefficient A(:)=1 (1+:) 1 (3�2&:)(1+2:)�(8 - ?) controls the one-
loop divergence in 111 . The Wilson functions are easily obtained:

`LR
\ #+�+ ln \ | bare=&u� A(:)+O(u� 2) (8)

and

;LR
u� #+�+u� |bare=&[=� +( 5

2&:) `LR
\ ] u� (9)
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Clearly, the LR theory exhibits one (Gaussian) fixed point u� *=0 which is
easily shown to be stable above the upper critical dimension, and a non-
trivial fixed point u� *=2=� �[(5&2:) A(:)]+O(=� 2), stable below dc . At this
fixed point, the value of `LR

\ is again known to all orders in =� , namely,
`SR

\ *=&2=� �(5&2:).
The scaling properties of the long-range models are again easily

derived from an RG equation for the vertex functions. For comparison
with the SR case, we quote the result for the dynamic structure factor:

S(q, |)=l &2(1+:)S(q | | l &1&2LR, q= l &1, |l &2) (10)

Once again, we observe anomalous diffusion; here, however, it is controlled
by the LR exponent 2LR#`SR

\ * �2=(7&d )�(5&2:)&1.
It is obvious at this point that the limit : � 0, taken in the Wilson

function (8) or the correlation function (10), will not restore the SR theory
First, lim: � 0 `LR

\ = &u� �16+O(u� 2) which reproduces only the w=0
component of `SR

\ . Second, this naive limit cannot generate a non-vanishing
`SR

_ which plays a key role in the SR theory. Thus, not surprisingly, we do
not observe a smooth crossover from the SR to the LR theory, by simply
letting : tend to zero in this naive fashion. An elegant way of dealing with
this difficulty was suggested in ref. 10: By treating : as a small param-
eter of O(=) and expanding in both = and :, one can ``magnify'' the small
:-section of (d, :) space and resolve the crossover between the SR and
LR fixed points. Concerning the scaling form of the structure factor, the
prefactor l &2(1+:) originates entirely in the bare dimensions of the fields.
Since these are well defined under a naive : � 0 limit (cf. Sect. 2) and
remain unrenormalized, we have lim: � 0 l &2(1+:)=l &2 without further
complications. The exponent 2LR , however, must be tracked much more
carefully.

Before turning to these subtleties, we briefly consider the other limit
: � 1. First, we summarize the :=1 theory, (9) with =� =4&d, in its own
right. Here, b measures the strength of the (non-conserved) noise. The
effective coupling is u� =Gd g2\&3�2b. According to ref. 9, there is only one
nontrivial Z-factor, namely Zp=1&3u� �(8=)+O(u� 2). Again, Zb=Zu=1 to
all orders. Thus, the theories with :=1 and 0<:<1 exhibit the same set
of UV divergences. From the preceding discussion, it is therefore clear that
we may anticipate a smooth crossover here. This is explicitly confirmed
by the results of ref. 9 for :=1: two fixed points u� *=0 and
u� *=16=�9+O(=� 2), are found, stable above and below dc=4, respectively.
At the nontrivial fixed point, 2=&`*\ �2 takes the exact value =�3. It is easy
to check that this agrees with the : � 1 limit of Eqs. (8)�(10), so that this
limit is continuous.
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C. The Hybrid Theory: :=O(=)

Finally, we turn to the analysis of the key region in (d, :) space,
namely, :=O(=). The naive : � 0 limit presupposes =<<:, and hence fails
to resolve the crossover between the SR and LR theories which occurs for
:=O(=). With both : and = small, we follow ref. 10 and analyze the general
dynamic functional, Eq. (4), near the upper critical dimension of the SR
theory, i.e., d=2. Both couplings _ and b will be retained, and their RG
flow will be studied. We refer to this model as the ``hybrid'' theory, since
it contains the vital elements of both SR and LR cases. Thus, the hybrid
theory will exhibit a well-defined : � 0 limit. Once again, we will be able
to obtain a number of results to all orders in ==2&d.

Our first task will be to identify a set of suitable couplings which allow
us to interpolate between the SR and the LR theories. Guided by ref. 10,
we consider the general structure of the Wilson functions in the SR and the
hybrid model. The appropriate effective couplings will be those that map
those functions onto one another.

To obtain a general form for the Wilson functions, we begin with the
Z-factors and construct them order by order in perturbation theory. Focus-
ing on the SR theory first, a typical graph of 111 , at L-loop, contains 2L
vertices, L (bare) correlators and 2L&1 (bare) propagators. Each vertex
carries a factor of g# q | | , and each correlator contributes a factor (q2

=+_q2
| |),

where (|; q)=(|; q | | , q=) denote the frequency and momentum of the
corresponding line. Symmetry requires that 2, out of the L parallel momen-
tum factors contributed by the vertices, will not be integrated over.
Moreover, all denominators are generically of the form (i|*&1+q2

=+\q2
| |).

Changing the parallel integration variable from q | | to \1�2q | | , it is
straightforward to show that such a graph will give rise to a contribution
of the form uL �L

m=0 wmALm�(L=)+O(=&2) in ZSR
\ . Here, the ALm are the

numerical coefficients of the O(=&1) poles, in minimal subtraction. Higher
order poles appear also, of course, but cancel in the Wilson functions and
need not be considered for this reason. Generic L-loop graphs of 120 have
a similar structure, with L+1 correlators and 2L&2 propagators, and the
coefficients of the lowest order =-poles will be denoted by BLm here. Collect-
ing, we obtain the Z-factors in the general form:

ZSR
\ =1+ :

�

L=1

uL :
L

m=0

wm ALm

L=
+O(=&2)

(11)

ZSR
_ =1+ :

�

L=1

uL :
L+1

m=0

wm BLm

L=
+O(=&2)
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The general form of the Wilson functions is easily found from the above:

`SR
\ = :

�

L=1

ul :
L

m=0

wmALm

(12)

`SR
_ = :

�

L=1

ul :
L+1

m=0

wmBLm

Next, we consider the hybrid case. Two key differences emerge: First,
each correlator now contributes a factor of (q2

=+_q2
| |+bq2(1&:)

| | ) to a given
diagram. This product gives rise to a sum of individual terms each of which
contains L&n factors of type (q2

=+_q2
||) and n factors of type bq2(1&:)

| | ,
with n=0, 1,..., L. Second, since : is now of O(=), the poles in these
individual contributions are proportional to 1�(L=+2n:).(10) Following the
same reasoning as above, and recalling the effective coupling v=b\:�_, one
finds quite readily that

Z\=1+ :
�

L=1

uL :
L

n=0

:
L&n

m=0 \
L
n+ wmvn ALmn

L=+2n:
+O(=&2)

(13)

Z_=1+ :
�

L=1

uL :
L+1

n=0

:
L+1&n

m=0
\L+1

n + wmvn BLmn

L=+2n:
+O(=&2)

Here, ALmn and BLmn are the numerical coefficients of each pole. In mini-
mal subtraction, they are independent of both = and :, since the latter is
also O(=) here. Clearly, the associated Wilson functions take the form

`\= :
�

L=1

uL :
L

n=0

:
L&n

m=0
\L

n+ wmvn ALmn

(14)

`_= :
�

L=1

uL :
L+1

n=0

:
L+1&n

m=0
\L+1

n + wmvn BLmn

Next, we establish a relationship between the coefficients (ALm , BLm)
and (ALmn , BLmn), by considering the : � 0 limit of the hybrid theory. In
this limit, the dynamic functional, Eq. (4), simply reduces to that of the SR
theory, with _ replaced by _+b. Therefore, we can relate lim: � 0 Z\ and
lim: � 0 Z_ to ZSR

\ and ZSR
_ . Due to the replacement of _ by _+b, the SR

Z-factors depend on a modified set of couplings. Defining

u� #u(1+v), w� #
w

1+v
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we obtain:

lim
: � 0

Z\(u, w, v)=Z SR
\ (u� , w� )

(15)
lim
: � 0

Z_(u, w, v)=(1+v) ZSR
_ (u� , w� )&v

Inserting the explicit forms for the Z-factors into Eq. (15) and recalling
that (ALmn , BLmn) are independent of :, we read off the relation between
the two sets of coefficients:

\L
n+ ALmn=\L&m

n + ALm

(16)

\L
n+ BLmn=\L+1&m

n + BLm

Combining Eqs. (16) and (14) provides us with an identity between SR and
hybrid Wilson functions:

`\(u, w, v)=`SR
\ (u� , w� )

(17)
`_(u, w, v)=(1+v) `SR

_ (u� , w� )

Here, `SR
\ and `SR

_ denote the Wilson functions of the SR model, Eq. (5),
evaluated at (u� , w� ). In the following, we use the abbreviated notation
�̀ \#`SR

\ (u� , w� ) and �̀ _#`SR
_ (u� , w� ).

Equation (17) form the basis for the remainder of the paper: they hold
the key for the discussion of the hybrid theory and for the desired matching
between LR and SR models. It is particularly gratifying that they are valid
to all orders in perturbation theory. An explicit calculation of the hybrid
Wilson functions, instead of the general considerations presented above,
would establish Eq. (17) only up to a given order.

To discuss the RG flow for the hybrid theory, we compute the ;-func-
tions for the couplings (u� , w� , v):

;u� (u� , w� , v)=+�+u� |bare=&_=+
5
2

�̀ \& �̀ _+:
v

1+v
(2& �̀ \)& u�

;w� (u� , w� , v)=+�+w� | bare=_ �̀ \& �̀ _+:
v

1+v
(2& �̀ \)& w� (18)

;v(u� , w� , v)=+�+v |bare=&[(1+v) �̀ _+:(2& �̀ \)] v

and seek their fixed points (u� *, w� *, v*). These fall into two groups.
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The first group is characterized by v*=0: In this case, Eqs. (18)
reduce to the fixed point equations (6) for the SR theory, so that we
recover the equivalents of the familiar SR fixed points, namely (i) the FDT
satisfying (8=�3+O(=2), 1, 0), (ii) the FDT violating (16=+O(=2), 0, 0),
(iii) the fixed point (16=�3+O(=2), 1�3+O(=), 0) on the separatrix between
(i) and (ii), and finally the Gaussian fixed line (iv) (0, w� , 0). In contrast to
the SR case, however, their stability needs to be investigated in the
three-dimensional space spanned by (u� , w� , v), controlled by the 3_3 matrix
M#(�i ;j)*, i, j=u� , w� , v. For v*=0, we find �u� ;v=�w� ;v=0 at all of these
fixed points, so that only the upper left 2_2 corner of M (which is just
MSR) and the bottom right element, �v;v=& �̀ _&:(2& �̀ \), are relevant.
The eigenvalues of MSR were already computed in Sect. (3.1), so that only
fixed points (i) and (ii) remain as candidates for global stability if =>0.
For fixed point (i), �̀ *\= �̀ *_=&2=�3 to all orders (cf. Sect. 3.1) so that �v;v

is positive for :<:1#=�(3+=). Thus, :1 demarcates the stability boundary
of the FDT satisfying SR fixed point (i). Considering fixed point (ii), we
have �̀ *\= &=+O(=2) and �̀ *_=&3=�2+O(=2), giving positive values for
�v;v , provided :<:2#3=�4+O(=2). So, the FDT violating SR fixed point
(ii) remains stable for a larger region of a than its FDT-satisfying partner.
We remark that, in contrast to :1 , :2 is known only perturbatively. Finally,
the fixed line (0, w� , 0) is stable provided both = and : are negative.

Returning to =>0, it is clear that another fixed point must become
stable beyond :2 . By necessity, this can only be a member of the second
group, having v*{0. For all of these, the [ } } } ] bracket in the last line of
Eqs. (18) vanishes, so that the first two equations simplify to

;u� (u� , w� , v*)=&[(=+2:)+( 5
2&:) �̀ \] u�

(19)
;w� (u� , w� , v*)=[2:+(1&:) �̀ \] w�

One should note that, with =� ==+2:, ;u� is precisely the ;-function of the
LR theory, Eq. (9). Thus, we identify the second group as the hybrid
partners of the LR fixed points. The equation for ;u� has a trivial solution
u� *=0 and a nontrivial one, with u� *{0. Seeking the corresponding values
for w� *, we obtain a ``Gaussian'' fixed point (v) (0, 0, �) and a nontri-
vial one (vi) with u� *=32(=+2:)�5+O(=2), w� *=0 and v*=(4:&3=)�
[3(=+2:)]+2:�3+O(=2). Note that we have expanded u� * in both = and :,
keeping only terms to first order in either, since both are assumed to be of
the same order. v* is O(1) which should not be disturbing since v is not a
perturbative coupling. Since u� *{0 here, we find �̀ *\=&2(=+2:)�(5&2:)
to all orders.
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Turning to the stability of these fixed points, it is straightforward to
determine that the Gaussian line is stable for d>2(1+:), i.e., above the
upper critical dimension of the LR theory. For d<2(1+:), we find a more
complex situation: for :<:1 , fixed point (vi) has two unstable directions.
One of these becomes stable above :1 . For :>:2 , this fixed point is
globally stable.

It is natural, of course, to seek fixed points where neither u� * nor w� *
vanish. This attempt gives us a pair of equalities, valid to all orders:

0=(=+2:)+( 5
2&:) �̀ *\

(20)
0=2:+(1&:) �̀ *\

which do not result in a unique equation for such a fixed point. Instead,
they select a specific value of :, namely :=:1==�(3+=), where a fixed
line (vii) exists, parameterized by w� : (32=�[3(3w� +1)], w� , (3w� &1)(1&w� )�
(3w� 2+2w� +3)). This line mediates the stability loss of fixed point (i).

The crossover scenario between the SR and the true LR theory can
now be summarized. Let us fix d just below 2 and increase : starting
from zero. For sufficiently small 0�:<:1 , the RG flow is dominated by
the SR behavior. The SR fixed points (i) and (ii) are stable, within their
respective domains of attraction. The separatrix forms a surface which cuts
the v=0 plane at w� =1�3+O(=) and then bends over to larger values of w�
as v increases. The unstable LR fixed point (vi) is found on the separatrix,
in the unphysical region v<0. When : reaches :1 , the correlated noise
begins to make its presence felt. Specifically, for :1<:<:2 , the FDT
violating fixed point (ii) is the only globally stable fixed point. The FDT
restoring fixed point (i), while still stable within the v=0 plane, has become
unstable to small perturbations out of that plane. Thus, a flow line starting
near (i), with a small v>0 component, will first flow out into the half-
space v>0 and then bend back towards v=0, flowing into the FDT violat-
ing fixed point (ii). The sign of v remains invariant under the flow. The LR
fixed point (vi) is still unphysical, but has moved closer to the v=0 plane.
Finally, at :=:2 , (vi) merges with (ii) and moves out into the positive v
region as : increases beyond :2 . The LR fixed point (vi) is now the only
stable one, and the global RG flow is dominated by the LR theory. A dif-
ferent view of the SR-LR crossover is presented in Fig. 1 which shows the
location of the stability boundaries as functions of : and d.

It is interesting to note the two different scenarios which control the
stability loss of fixed points here. Fixed points (ii) and (vi) exchange their
stability by merging, similar to the stability exchange between the Gaussian
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Fig. 1. Stability boundaries of different fixed points as functions of d and :. The heavy solid
lines denote boundaries whose location is known to all orders in perturbation theory.

and the Wilson�Fisher(20) fixed points in ,4-theory when d drops below 4.
In contrast, fixed point (i) loses its stability, at :=:1 , by generating a fixed
line. This fixed line has two key properties: first, it connects fixed points (i),
(iii) and (vi); second, it lies on the surface forming the separatrix between
fixed points (i) and (ii). This surface bends back towards the v=0 plane,
as : increases, to the extent that it reaches fixed point (i) at :=:1 . Thus,
fixed point (i) loses one of its three stable directions when being absorbed
by the separatrix; moreover, this direction is now spanned by the fixed line:
this allows the flow to change sign when : crosses :1 .

The crossover which we observe in the flow diagrams is also reflected
by the exponents. As an example, we consider the scaling form of the LR
structure factor, Eq. (10). We recall that its scaling behavior is determined
by the exponent 2LR==� �(5&2:). The hybrid fixed point (vi), on the other
hand, generates an exponent 2#& �̀ *\�2=(=+2:)�(5&2:). These two
exponents clearly match, since =� ==+2:. As : decreases, we reach the
stability boundary :2=3=�4+O(=2), where (vi) and (ii) exchange stability.
Here, the exponent associated with (ii) is 2SR=&`SR

\ * �2==�2+O(=2), to
be compared with the corresponding value near (vi), 2=(=+2:2)�
(5&2:2). In this way, continuity is ensured. However, a discontinuous
change of exponents may occur as : decreases below :1 : above :1 all
positive (u� , w� , v) fall into the domain of attraction of fixed point (ii),
with 2SR==�2+O(=2); in contrast, below as, some of these will be
attracted towards fixed point (i) where 2SR==�3. For these theories,
the strong anisotropy exponent 2 will change discontinuously upon
crossing the stability boundary between fixed points (i) and (ii).
Note, however, that 2SR==�3 coincides with 2LR==� �(5&2:) at the
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line :=:1==�(3+=) to all orders in =. Nevertheless, even though the
exponents may undergo discontinuities, both the hybrid and the SR struc-
ture factors scale according to Eq. (7). Thus, the scaling forms remain
unchanged.

IV. CONCLUSIONS

Using field theoretic methods, we have analyzed the RG flow for a
model of biased diffusion subject to a noise term, parameterized by its
momentum dependence, q2(1&:)

| | , with spatially long-ranged correlations.
One limit, :=0, corresponds to a ``short-range'' model with purely local,
conserved noise, and the other, :=1, models biased diffusion with a non-
conserved noise. The crossover from :<1 to :=1 presents no difficulties;
however, the opposite limit, : � 0, is quite subtle. Here, the full crossover
is observed only if we interpose a hybrid model with :=0(=), between the
SR (:=0) and the LR (: finite) theories. This hybrid contains the key
elements of both, SR and LR, Langevin equations. It possesses a number
of fixed points, including the equivalents of the SR and the LR models, so
that the crossover can be understood in terms of a stability exchange
between different fixed points. Clearly, considering : on the scale of =
enables us to resolve this ``fine structure.'' Just below two dimensions, the
scenario is the following: for : below a lower stability limit :1 , the theory
is controlled by two stable SR fixed points, one FDT restoring and the
other FDT violating, each with its own basin of attraction. Stated dif-
ferently, we are in a ``weak noise'' regime, for d<dLR#2&3:�(1&:),
where the long-ranged noise does not significantly modify the universal
behavior of the system. As : increases beyond :1 but remains below an
upper stability limit :2 , the SR FDT restoring fixed point becomes
unstable, leaving the SR FDT violating fixed point in control of the flow.
This stability exchange is mediated by a fixed point line. Finally, above :2 ,
the SR FDT violating fixed point also destabilizes and the nontrivial LR
fixed point becomes globally stable. We note, in conclusion, that a similar
mechanism, namely stability exchange through a fixed point line, has pre-
viously been observed in the Sine�Gordon model: there, two fixed points
are stable below d=2, corresponding to the high- and low-temperature
phases respectively. As d increases beyond 2, the high-temperature fixed
point loses its stability, via a similar fixed point line.(21)

Unfortunately, most of the nontrivial crossover phenomena discussed
here are confined to dimensions 1<d<2. Above d=2, the long-range
noise dominates, either via its nontrivial or its Gaussian fixed point. In one
dimension, on the other hand, there is no transverse subspace so that the
SR FDT violating fixed point cannot be accessed. Consequently, the
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scenario described above must change significantly. It is conceivable that
only the lower stability limit might survive here or that the two stability
limits merge, leaving us with a stability exchange between the FDT restoring
SR and the LR fixed point. Since, at :=:1 , 2SR=2LR==�3 to all orders,
this may be a reasonable conjecture. Moreover, in d=1, we have :1=1�4
and 2=1�3. These values agree with the corresponding results(13, 14) for the
one-dimensional KPZ equation with correlated noise where only one
stability limit is observed.

Nevertheless, our analysis plays the role of a pilot study for a number
of other interesting problems. Clearly, one might consider an interacting
theory subject to an external bias(19) and a long-range noise term. (16) Here,
dc=5, so that physical dimensions are more accessible, and comparisons
with Monte Carlo simulations can be made. Other questions of interest
concern noise terms with different spatial correlations, or nontrivial
correlations in time. For equilibrium systems, the existence of an under-
lying Hamiltonian ensures that these correlations have no effect on static
properties. For non-equilibrium steady states, however, the static behavior
is generically inseparable from the dynamics. Studies of anomalous noise
correlations in non-equilibrium systems may help to unravel the nature of
this coupling.
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